入门指南:如何微调视觉语言模型(VLM)实现特定任务
视觉语言模型(Vision-Language Models, VLMs)是近年来多模态人工智能领域的热门研究方向。这类模型能够同时处理视觉(如图像或视频)与语言信息,广泛应用于图像问答、图文生成、图文检索等任务。随着开源模型的发展,普通开发者也能通过微调技术将预训练模型快速适配特定领域需求。
本教程以电商图文数据为例,通过微调 Qwen2.5-VL-3B-Instruct 模型,让模型从通用 视觉理解转变为专注于商品识别和描述的能力,实现对商品图片的多级分类与产品描述生成。Qwen2.5-VL-3B-Instruct 是一款体积小、推理效率高、资源消耗低的小型视觉语言模型,特别适合在中小规模场景中快速部署和落地应用,可显著降低计算与成本开销。
微调前的视觉语言模型虽然可以对图像进行一定的泛化理解,但往往只能输出较为模糊、通用的描述。通过本次微调,我们的目标是让模型能够准确识别电商图片中的商品类别,并生成更符合平台风格的精细化产品描述,从而为电商系统自动补全结构化商品信息。